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Probability theory for number of mixture components
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Abstract

A general theory is proposed for the probability of different outcomes of success and failure of component resolution, when complex
mixtures are partially separated byn independent columns. Such a separation is called ann-column separation. An outcome of particular
interest is component resolution by at least one column. Its probability is identified with the probability of component resolution by a single
column, thereby defining the effective saturation of then-column separation. Several trends are deduced from limiting expressions of the
effective saturation. In particular, at low saturation the probability that components cluster together as unresolved peaks decreases exponentially
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ith the number of columns, and the probability that components cluster together on addition of another column decreases by a fac
wice the column saturation. The probabilities of component resolution byn-column and two-dimensional separations also are compared
heory is applied by interpreting three sets of previously reported retention indices of the 209 polychlorinated biphenyls (PCBs), as d
y GC. The origin of column independence is investigated from two perspectives. First, it is suggested that independence exis
ifference between indices of the same compound on two columns is much larger than the interval between indices required for
econd, it is suggested that independence exists when the smaller of the two intervals between a compound and its adjacent ne
orrelated with its counterpart on another column.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Several modifications of single-column separations have
een made to increase resolution, when selectivity and ef-
ciency are inadequate. Among these include the use of
andem columns, recycling, column switching, and multi-
imensional separations. A traditional approach is to use two
r more columns of different selectivity, with the expectation

hat compounds of interest are separated by at least one of
hem. We are aware of only two theories that serve as guide-
ines to success. Both are probabilistic, with mixture com-
onents either randomly or uniformly distributed throughout

he separations. Connors represented then retardation factors
f a compound inn TLC separations by ann-dimensional
oordinate, which was distributed randomly among the dis-
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crete cells of ann-dimensional space. Each cell spanned
peak’s width in all dimensions. He calculated the probab
that cells contain either one or no coordinate, correspon
to total mixture resolution. He also calculated the probab
that, on average, one cell contained more than one co
nate[1]. Martin et al. later calculated the probability of
solving all mixture components by at least one ofn columns
as the complement of the probability that separation byn
columns is incomplete. The probability was calculated f
a general expression of the likelihood that a specific n
ber of intervals (in this case, all of them) between adjac
uniformly distributed peak centers exceeded the interva
quired for resolution[2]. Although the two theories differ
form, both depend on the number of mixture components
numbern of separations, and the separations’ peak ca
ties. Both theories affirmed the probability of total mixt
resolution increases with increasing column number. Sp
ically, Connors showed four TLC plates, each having a
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capacity of 10, should be able to resolve about 100 compo-
nents[1], and Martin et al.[2] showed the probability that a
10-component mixture is fully resolved increases from 20%
to 89%, when the number of columns having a peak capacity
of 50 increases from 1 to 10.

A common theme of both theories is complete or nearly
complete resolution. In some cases, this is not required;
rather, it is sufficient that the probability of separation be
increased. In this paper, we propose general expressions for
the probability that a mixture component is separated byn
columns. The theory is applied by comparing its predictions
to our interpretation of three recently reported sets of reten-
tion indices of polychlorinated biphenyls (PCBs), as mea-
sured by GC with three different stationary phases[3]. The
numbers of the 209 congeners expected to be separated by
the resolution threshold reported in ref.[3] – about 100 by
any one column, 150 by any two columns, and 180 by the
three columns – are consistent with calculations based on the
indices.

2. Theory

2.1. Basics

Consider the partial separation of a mixture byn one-
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Table 1
States and state probabilities for three columns labelled 1, 2, and 3

State State probability

1 2 3

+ + + p1p2p3

+ + − p1p2p̄3 = p1p2 − p1p2p3

+ − + p1p̄2p3 = p1p3 − p1p2p3

− + + p̄1p2p3 = p2p3 − p1p2p3

+ − − p1p̄2p̄3 =
p1 − p1p3 − p1p2 + p1p2p3

− + − p̄1p2p̄3 =
p2 − p2p3 − p1p2 + p1p2p3

− − + p̄1p̄2p3 =
p3 − p2p3 − p1p3 + p1p2p3

− − − p̄1p̄2p̄3 =
1 − p1 − p2 − p3 + p1p2 +
p1p3 + p2p3 − p1p2p3

Singlet probabilities for individual columns arep1, p2, andp3, respectively.
Pluses and minuses indicate resolution and failure of resolution, respectively.

to failure of separation by alln columns. The probability
p(n) of separation by at least one column consequently is the
complement of the probability that separation occurs on no
column

p(n) = 1 −
n∏

i=1

p̄i (1)

where the capital pi indicates thatn p̄i factors are multiplied.
In mathematical form, Eq.(1) is identical to the equation
reported by Martin et al.[2]. We are interested, however,
in the probability that only a single component is resolved,
instead of the probability of total resolution (i.e., the ¯pi factors
differ in the two equations). Eq.(1) represents the sum of all
state probabilities, except the one associated with complete
failure of resolution. For example, the sum ofp1p2, p1p̄2,
andp̄1p2 equalsp(2) for a 2-column separation, and the sum
of the first seven states inTable 1equalsp(3) for a 3-column
separation. Sincep(n) is the sum of all state probabilities,
except one, it is greater than anypi and the likelihood of
component separation increases.

Both the state probabilities and Eq.(1) are general and
not constrained by a specific type of probability distribution.
In subsequent discussion, we will assume that mixture com-
ponents are randomly distributed throughout separations but
this is not necessary. However, all probabilitiespi must be
i

2
a
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i , on
w
a ble of
s po-
n ions)
v fre-
imensional columns of different selectivity, henceforth
e called ann-column separation. Letpi equal the probabi

ty that a mixture component is resolved as a singlet by
th column, withp̄i = 1 − pi equaling the complementa
robability that it is not resolved. In general,pi differs for
ifferent columns, depending on specifics of the separa
e define a state as a member of the 2n possible outcomes

uccess and failure of resolution by then-column separation
f the pi’s are independent, then the probability that a s
ccurs can be calculated by multiplying appropriate va
f pi andp̄i.

For example, ifn = 2, then 22 = 4 states exist. If the tw
olumns arbitrarily are labeled 1 and 2, then the states
esolution by both 1 and 2, resolution by 1 but not 2, res
ion by 2 but not 1, and resolution by neither 1 nor 2. For
ndependent probabilitiesp1 and p2, the state probabilitie
rep1p2, p1p̄2, p̄1p2, andp̄1p̄2, respectively. They sum
ne, as is verified by substituting expressions for the com
entary probabilities. Different states are generalized e
sn increases, since they are analogous to the output
f an n-bit analog-to-digital converter (hence, our desig

ion of the 2n outcomes as states), and their probabilities
valuated simply.Table 1reports the eight states and th
robabilities forn = 3. As before, the probabilities sum
ne.

Since components of singlet peaks (singlets) are more
ly identified and quantified than those of multiplets, the p
bility that a component is separated by at least one colu
f particular interest. Forn columns, this outcome occurs
n − 1 states; the only state in which it does not corresp
ndependent, and this is discussed later.

.2. Relations between singlet probabilities in single-
nd n-column separations

The probabilityp(n) can be interpreted directly, but it
nstructive to relate it to statistical-overlap theory (SOT)
hich several reviews have been published[4–7]. In SOT,
separation is postulated to be one of a large ensem

imilar separations, in which the number of mixture com
ents and their retention times (or other measure of posit
ary in accordance with some probability distribution and
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quency. In the simplest theory, the components are randomly
distributed in accordance with a homogeneous Poisson pro-
cess, and the probabilitypi of singlet formation in theith
separation is[8].

pi = e−2αi = e−2m̄/nc,i (2)

wherem̄ is the average number of mixture components in the
separation ensemble, andαi andnc,i are the saturation and
peak capacity. The probabilitypi is increased by reducing
saturationαi.

In ann-column separation, it suffices that a component is
resolved, regardless of the number of columns resolving it.
Because all states contributing to separation are relevant, we
propose thatp(n) in Eq.(1) be identified with a specific form
of Eq.(2).

p(n) ≡ e−2αe(n) (3)

whereαe(n) is the saturation of a single-column separation
having the same effective singlet probability as ann-column
separation.

This interpretation facilitates derivation of relations con-
necting the two separation types. By combining Eqs.(1)–(3),
we explicitly can write

e−2αe(n) = 1 − (1 − e−2α1)(1 − e−2α2) . . .
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made possible byn-column separations. Rather, the improve-
ment is conveyed better by the reduction of the cluster prob-
ability p̄(n), which is the probability that a component is not
a singlet but is part of a doublet peak, triplet peak, etc. From
Eqs.(1) and (6b), one easily calculates

p̄(n) = 1 − p(n) =
n∏

i=1

p̄i ≈ (2α)n; 0 < α � 1 (6c)

Eq. (6c) shows that the cluster probability decreases as a
power of the numbern of columns. Furthermore, the smaller
α is, the more rapid is the decrease with increasingn.

In contrast, for largeα, direct expansion of Eq.(5) gives
the approximation

αe(n) ≈ −1
2ln(n) + α; α � 1 (7a)

for which the singlet probability is

p(n) ≈ ne−2α = npi; α � 1 (7b)

Thus, for largeα, ann-column separation provides only
ann-fold increase of the singlet probability associated with
any column. Clearly, the potential ofn-column separations
to improve resolution is largest at smallα.
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(1 − e−2αn−1)(1 − e−2αn ) (4a)

hich determinesαe(n) as

e(n) = −1
2ln[1 − (1 − e−2α1)(1 − e−2α2) . . .

(1 − e−2αn−1)(1 − e−2αn )] (4b)

.3. Limiting cases

Several insights are obtained by considering limiting c
f Eqs.(3) and (4b). If the saturations of then columns are

he same (i.e., if the columns have the same peak capa
hen allpi’s are equal and Eq.(4b) reduces to

e(n) = −1
2ln[1 − (1 − e−2α)

n
] (5)

hereα =αi for all columns. For smallα, Taylor-series ex
ansions can be used to simplify Eq.(5)

e(n) ≈ 2n−1αn; 0 < α � 1 (6a)

or which Eq.(3) predicts the singlet probabilityp(n) to be

(n) ≈ e−(2α)n ≈ 1 − (2α)n; 0 < α � 1 (6b)

q.(6b)shows thatp(n) rapidly approaches one with decre
ng α and increasingn.

However, for smallα, p(n) already might be close to on
ven for a single column. Since it cannot exceed one, it
an increase slightly with increasingn. Eq.(6b)consequentl
oes not tell the full story of the improvement of separa
.4. Effect of additional column

Since one’s first approach to improving ann-column sepa
ation might be to add another column, the decrease of c
robability and increase of singlet probability resulting fr

his action are of interest. These can be calculated from

p̄(n − 1)

p̄(n)
=

∏n−1
i=1 p̄i∏n
i=1p̄i

= 1

p̄n

= (1 − e−2αn )−1; n ≥ 2

(8a)

nd

p(n)

p(n − 1)
= 1 − ∏n

i=1p̄i

1 − ∏n−1
i=1 p̄i

; n ≥ 2 (8b)

here both ratios are greater than 1. Although Eqs.(8a) and
8b) are equally valid, the former provides more useful
ights at smallα and the latter at largeα. This happens, be
ausep(n) and p̄(n) are almost one at small and largeα,
espectively, and the ratio of two such quantities havinn
alues differing by only the number, one, is not very in
ative.
At small α, Eq. (8a) can be simplified by Taylor-seri

xpansion to

p̄(n − 1)

p̄(n)
≈ (2αn)−1; 0 < αn � 1, n ≥ 2 (9a)

q.(9a)is a logical consequence of Eq.(6c), when all�i are
qual. It also is valid even when they are not equal, sincepi

actors in Eq.(8a)exceptp̄n cancel. In contrast, substituti
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of Eq.(7b) into Eq.(8b) reveals

p(n)

p(n − 1)
≈ n

n − 1
; α � 1, n ≥ 2 (9b)

Eq. (9a)shows that addition of another column at lowαn

and low cluster probability (high singlet probability) dramat-
ically reduces the likelihood that a clustered or unresolved
peak exists. The reduction is independent of the number of
columns but increases rapidly with decreasingαn. In con-
trast, Eq.(9b)shows that addition of another column at large
α, unsurprisingly, is not very effective. For example, the sin-
glet probability in a 2-column separation is only two times
larger than in a single-column separation. Also, the degree of
improvement decreases with addition of each extra column
and is independent ofα.

2.5. Relation between singlet probabilities in n-column
and two-dimensional separations

SOT also exists for separations in two[9–11] and higher
[12,13] dimensions. In light of interest in comprehensive
two-dimensional gas chromatography (GC× GC) [14–17],
liquid-chromatography/capillary electrophoresis (LC× CE)
[18–21], and related methodologies, we compare the singlet
probabilityp2D in a two-dimensional separation to that of an
n ining
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2.7. Alternative theory for pi

In some cases, Eq.(2) is too simple to describe the singlet
probability and must be replaced by[23,24]

pi =
∫ 1

0
f (ζ)e−2α(ζ) dζ (12a)

whereζ is a reduced time (or volume, index, etc.) spanning
zero to one,f(ζ) is the frequency of reduced retention times,
and the saturation

α(ζ) = m̄f (ζ)x0(ζ)

X
(12b)

varies withζ (the subscript,i, is not used with most terms
in Eq. (12) for the sake of simplicity). In Eq.(12b), x0(ζ)
is the minimum interval between successive retention times
required for separation, which often varies withζ due to
changes of peak width and resolution[24], andX is the span
of the separation. The frequencyf(ζ), which is a probabil-
ity density function having unit area, accounts for the in-
homogeneity of retention times, i.e., the elution of signifi-
cantly different numbers of mixture components, within the
same time interval, in different regions of the separation. If
x0(ζ) ≡ x0 is constant andf(ζ) = 1, then Eq. (12) reduces to
Eq.(2), sinceX/x0 is the peak capacity. Detailed explanations
of the principles underlying Eq. (12), which can be substi-
t here
[
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p p-
-column separation. For a large rectangular space conta
ones having equal standard deviations in both dimens
he former can be expressed as[22]

2D = e−α1π/n∗
c (10)

hereα1 is the saturation of the first dimension andn∗
c is the

eak capacity of the orthogonal second dimension (co
ions top2D for small spaces and unequal standard devia
ere made recently[11]). The general comparison is ma
y equating Eqs.(4a) and (10). For the special case in whi

he saturations of then columns and the first dimension
he two-dimensional separation are the same and equaα,
his relation simplifies to

−απ/n∗
c = 1 − (1 − e−2α)

n
(11)

hich determinesn∗
c for differentα andn. Eq.(11)is a logica

asis of comparison, since it rests on the assumption
he first separation is the same in the two separation
nd quantifies then∗

c necessary to equal the increased sin
robability provided byn − 1 additional columns. Simila
elations can be derived for higher dimensions.

.6. Expected numbers of components associated with
iven probability

The expected number of components in a specific
nd the expected numbers of components resolved by
le column, ann-column separation, or a two-dimensio
eparation are equal to the product of ¯m and the appropria
robability (e.g.,pi, p(n), etc.).
uted for e−2αi in the preceding equations, are given elsew
23,25].

. Procedures

.1. Computer simulations

Digital simulations were carried out to verify state pr
bilities and Eq.(1) for mimicked 2- and 3-column sepa

ions. For variouspi’s and m̄’s, mimicked mixture compo
ents were assigned to different states based on suc
nd failures of separation, as determined by random
ers less thanpi and greater thanpi, respectively. From 50
uch simulations, the average and standard deviation o
umbers of components in each state, and separated

east one column, were computed. These were compa
heoretical expectations and reduced chi-squares wer
ulated. In the simulations, thepi’s varied over the 19 va
es, 0.05, 0.10, 0.15. . ., 0.90, and 0.95, and allpi com-
inations were considered (192 = 361 for n = 2; 193 = 6859

or n = 3). The m̄’s were 50, 250, and 500, with the a
ual Poisson distributed number of mimicked componen
ny simulation approximated by the Box–Muller transfo

26].

.2. Analysis of PCB data

Three sets of retention indices of the 209 PCBs,
orted in ref.[3] and determined by GC with three ca
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illary columns, were interpreted by theory. The columns
were 60 m× 0.25 mm i.d., with a 0.25�m film of DB-XLB;
60 m× 0.25 mm i.d., with a 0.10�m film of DB-5; and
30 m× 0.25 mm i.d., with a 0.25�m film of DB-17MS. They
were held at 50◦C for 2 min and then ramped to 300◦C at
2◦C/min. Other chromatographic details are found in the ref-
erence[3]. The frequenciesf(ζ) of the indices were com-
puted with the software, Minitab Release 12 for Windows
(Minitab, Inc., State College, PA). For each column, proba-
bility pi was calculated from Eq. (12) usingf(ζ) and Simp-
son’s rule, withm̄ andx0 equaling 209 and one index unit,
respectively. The expected numbers of PCBs in different
states, and separated by at least one column, were predicted
from thesepi’s for three 2-column separations based on DB-
XLB and DB-5, DB-XLB and DB-17MS, and DB-5 and DB-
17MS, and for the one 3-column separation. The predictions
were compared to the numbers of PCBs identified as sin-
glets in ref.[3], based on the assumption that one index unit
sufficed for resolution. Different congeners were identified
by IUPAC numbers, and only congeners having unique IU-
PAC numbers were counted in determining the number of
singlets.

The predictions then were generalized by repeating the
calculations for differentx0 values and interpreting the in-
dex tables. In the interpretations, a PCB was identified as
a singlet if its index was separated from the indices of the
p .
A AC
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Table 2
Reduced chi-squaresχ2

ν calculated from digital simulations and theory

n Probability χ2
ν × 103

m̄ = 50 m̄ = 250 m̄ = 500

2 p1p2 2.84 2.14 2.12
p1p̄2 3.53 2.29 2.25
p̄1p2 3.29 2.56 1.88
p̄1p̄2 3.23 2.37 2.39
p(2) 5.57 2.77 2.17

3 p1p2p3 2.70 2.11 2.01
p1p2p̄3 2.65 2.03 2.03
p1p̄2p3 2.66 2.16 2.08
p̄1p2p3 2.65 2.25 2.01
p1p̄2p̄3 2.68 2.11 2.08
p̄1p2p̄3 2.78 2.19 2.09
p̄1p̄2p3 2.69 2.20 2.07
p̄1p̄2p̄3 2.63 2.21 2.07
p(3) 6.38 2.88 2.46

ν =361 forn = 2 and 6859 forn = 3.

4.2. Implications

Fig. 1is a graph ofαe(n) versusα, for n = 1, 2, 3, 5, and 10,
as calculated from Eq.(5). The bold line representsαe(n) =α

for a single column (n = 1). All other graphs lie below the
line, indicating thatαe(n) <α and the singlet probability in-
creases with column number. The dashed lines represent the
approximation, Eq.(7a), and coincide with the curves at large
α, which have the limiting slope of one. The insert is an ex-
pansion of the lower left-hand corner ofFig. 1. The dashed
curves represent the approximation, Eq.(6a), whose relative
error at anyα increases with increasingn. Of particular inter-
est is its prediction of the rate at whichαe(n) increases with
smallα

dαe(n)

dα
≈ n(2α)n−1; 0 < α � 1 (13)

F f
a ert
i ting
a

revious and subsequent PCBs by at leastx0 index units
s before, different congeners were identified by IUP
umbers.

The differences between the indices of the same
ener on different columns, and the variation among diffe
olumns of the smaller of the two intervals between a
ener and its adjacent neighbors, were calculated to ch

erize the independence of the PCBpi’s. To assist the chara
erization, the retention indices of congeners were simu
ith random numbers in agreement with frequencyf(ζ), us-

ng procedures discussed elsewhere[23,24].

.3. Computations

All computational algorithms were written in FORTRA
0 or Mathematica 4.0 (Wolfram Research, Inc., Champ

L).

. Results and discussion

.1. Validation by simulation

Table 2reports the reduced chi-squaresχ2
ν calculated from

igital simulations carried out to verify theory for differe
tate probabilities and Eq.(1). They are less than 0.01 a
ignify the correctness of theory. Two trends are thatχ2

ν de-
reases slightly with increasing ¯m and is larger forp(n) than
or individual state probabilities. In all cases, however, the
s sound.
ig. 1. Graph for differentn of saturationαe(n) defining singlet probability o
nn-column separation vs. saturationα of single-column separation. Ins

s expansion of graph at lowα. Dashed curves and lines represent limi
pproximations.
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Fig. 2. (a) Graph of cluster probability ratio ¯p(n − 1)/p̄(n) vs. saturationαn

of thenth separation. (b) Graph of singlet probability ratiop(n)/p(n − 1) vs.
α for differentn.

which is small for largen. Sinceαe(n) = 0 atα = 0, Eq.(13)
implies thatαe(n) differs little from zero for largen and small
α. For example,αe(5) = 0.00195 forα = 0.2, corresponding
to an increase of singlet probability fromp(1) = 0.670 to
p(5) = 0.996. In contrast, for the sameα, αe(2) only decreases
to 0.0575 andp(2) only increases to 0.891. Clearly, if a
single-column separation is fairly good (i.e., ifα is small)
and columns behave independently, then introducing a few
additional columns having similar saturations almost guar-
antees component resolution in at least one separation.

The linear dependence ofp(n) on n at largeα (Eq. (7b))
is explained easily. For largeα, all probabilitiespi are small,
their products (e.g.,pipj, i �= j) are negligibly small, and only
then states corresponding to separation by a single column
are relevant. This is easily understood by considering the
first seven states inTable 1, which contribute top(3). Only
the three state probabilitiesp1p̄2p̄3, p̄1p2p̄3, and p̄1p̄2p3
contain termspi that are not multiplied by other probabilities.
At largeα, p(3)≈ p1 + p2 + p3, which generalizes tonpi for
equalpi.

Fig. 2a is a graph of the cluster probability ratio
p̄(n − 1)/p̄(n) versusαn. At largeαn, the ratio approaches
one, as represented by the dashed horizontal line. Here, over-
lap is so severe that thenth column scarcely affects the cluster
probability. At smallαn, however, ¯p(n − 1) is much larger
thanp̄(n), and their ratio approaches the limit (2α )−1 (Eq.
( f this

finding should be emphasized. In practice, method develop-
ers may spend inordinate amounts of time trying to separate a
few unresolved peaks, when a separation of small saturation
is otherwise acceptable.Fig. 2a shows that the probability of
having unresolved peaks at small saturation declines rapidly
with each addition of a new column. Consequently, the addi-
tion of another column may provide more effective means of
increasing resolution than modifying the existing separation.

Fig. 2b is a graph of the singlet probability ratio
p(n)/p(n − 1) versusα for n = 2, 3, 4, and 5, when all column
saturationsαi ≡ α are equal. At smallα, the ratio rapidly in-
creases forn = 2 but increases more slowly for largen. This
outcome occurs, becausep(n) approaches one for smallα

and largen, and simply cannot increase more. Betweenα = 1
and 2,p(n)/p(n − 1) approaches the limiting values predicted
by Eq.(9b), which are represented by the dashed horizontal
lines. Althoughp(n)/p(n − 1) maximizes at largeα, this has
little significance. Separations at largeα are poor, and it mat-
ters little that ann-column separation is slightly better than
one based onn − 1 columns.

The attainment of acceptable levels of peak capacity
and saturation by a single-column separation must be bal-
anced against the requirements of analysis time and lin-
ear range. Potentially, they also can be attained without
compromising these requirements by using comprehensive
multi-dimensional separations[14–21]. Of particular in-
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9a)) represented by the dashed curve. The importance o
erest is comprehensive two-dimensional gas chrom
aphy (GC× GC). It has been shown elsewhere[15] that
he potential peak-capacity gainG in optimized GC× GC,
s compared tooptimized single-column GC based on t
ame first-dimension column, can be estimated asG ≈
.13N1/3

1 /Rs,2,min, whereN1 is the plate number of the firs
imension column andRs,2,minis the minimal acceptable re
lution in the second dimension. For typical first-dimens
olumns andRs,2,min= 1, the addition of a second dimens
an result in a potential order of magnitude increase in
eak capacity. However, at the current state of the art,
ral aspects of GC× GC must be improved substantially[15]

o realize this potential capacity. Most notably, the width
he modulator pulse must be reduced, without loss of
yte, by about an order of magnitude. Furthermore, the
ard deviation of the modulator pulse should be smaller
ms, while known cryogenic modulators that preserve

yte have standard deviations greater than 25 ms[27,28]. As
result, even the parity of saturation in currently avail
C× GC systems and their optimized single-column co

erparts can be questioned[29,30], andn-column separation
especially dual-column ones – remain the only prac
ay to reduce saturation without compromising analysis
nd linear range. However, we are confident that these
ical problems will be solved eventually, and conseque
e compare the performance ofn-column separations to tw
imensional ones like GC× GC.

Fig. 3is a graph of logn∗
c versusα for n = 2, 3, 5, and 10

s calculated from Eq.(11)by numerical bisection. Suppo
hat second-dimension peak capacitiesn∗

c in comprehensiv
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Fig. 3. Graph of logn∗
c vs. α for different n, wheren∗

c is the second-
dimension peak capacity required for two-dimensional andn-column sepa-
rations to have same the singlet probability. Theα’s of the first dimension
of the two-dimensional separation and alln columns are the same.

two-dimensional separations lie between 10 and 100 (i.e.,
log n∗

c lies between 1 and 2). If the saturationα of the first
dimension of the two-dimensional separation is large, then
the value ofn∗

c required to equal the singlet probability of
ann-column separation easily is attained or exceeded, even
for largen. This outcome reflects conditions where each of
then one-dimensional separations is relatively poor and the
probability of separation is relatively small. Under these con-
ditions, two-dimensional separations always will be superior
to n-column separations. With decreasingα, however,Fig. 3
shows that it might be difficult or impossible to attain ann∗

c
providing the same singlet probability as ann-column sepa-
ration. This is a conclusion we anticipate to be controversial,
but it is rationalized easily.All of the 2n − 1 states leading
to resolution contribute favorably to ann-column separation,
and the likelihood of separation increases withn. In contrast,
if resolution must be achieved by asingle two-dimensional
separation, then at low� very stringent demands are placed
on n∗

c. Perhaps it would be better to compare ann-column
separation ton two-dimensional separations, instead of just
one, but we defer that to another study.

4.3. Application of theory to PCB separations

Fig. 4 is a graph of frequencyf(ζ) versusζ computed
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Fig. 4. Graph of frequencyf(ζ) of reduced retention indices vs. reduced re-
tention indexζ of 209 PCBs measured on DB-XLB stationary phase. Indices
are reported in ref.[3].

creasing chlorine number, the variation off(ζ) with ζ largely
follows the distribution of isomeric substitutions of chlorine
on the biphenyl moiety, with a few low chlorine-substituted
PCBs at the separation’s beginning, a few high chlorine-
substituted PCBs at the separation’s end, and many interme-
diate chlorine-substituted PCBs between them. The frequen-
cies of the other two separations are similar, differing only in
small details. Becausef(ζ) is markedly inhomogeneous, Eq.
(12) must be used to calculate the singlet probabilitypi for
any column, instead of Eq.(2).

The numbers of PCBs resolved by a single index unit on
the DB-XLB, DB-5, and DB-17MS columns are counted eas-
ily in Table 3of ref. [3] (the unresolved ones conveniently are
boxed) and are 115, 95, and 105, respectively. These num-
bers compare favorably to the expected numbers of singlets
predicted by Eq. (12), which are 100.1 (pi = 0.4789), 104.7
(pi = 0.5010), and 104.0 (pi = 0.4976), respectively. The dif-
ferences of prediction are due to small differences inf(ζ).
The variation off(ζ) affects peak overlap significantly; if we
were to use Eq.(2) instead of Eq. (12), we would overpredict
the expected numbers of singlets as 127.8, 131.4, and 127.8,
respectively. Although the predictions are good, they are not
exact. Pietrogrande et al.[31] have shown that Arochlors, or
specific mixtures of PCBs, produce intervals between adja-
cent indices (actually, retention times) that are increasingly
structured as the chlorine content increases. We shall use the
P Bs is
s n GC-
s

CBs
r mes.
T abili-
t ir-
i B-
X ility
i bias
c eners
r hav-
rom the retention indices (or simply indices) of the 2
CBs measured on DB-XLB stationary phase, as rep

n ref. [3]. The reduced indicesζ = 0 and 1 correspond
he index bounds of 25 and 875, respectively, as calcu
y the Minitab software. For statistical reasons[25], the
ounds lie slightly beyond the actual first and last ind
33.0 and 867.0). All reduced indices are scaled linearly
ween the bounds. As shown in ref.[3], the indices vary lin
arly with time; consequently, so doesζ. The area,f(ζ) dζ,

s the probability that reduced indices lie betweenζ and
+ dζ [23,25]. Consequently, largef(ζ) values result whe

ndices are closely grouped, i.e., when many PCBs elu
brief time interval. Because volatility decreases with
oisson distribution, however, because the error for PC
mall, both here and in previous assessments based o
imulation software[24,25,32].

Table 3reports the expected and actual numbers of P
esolved by one index unit for various separation outco
he expected numbers were calculated from state prob

ies and Eq.(1) using bothpi’s evaluated by SOT and emp
cal probabilities calculated from the indices (e.g., for D
LB, 115 singlets are found, so the actual singlet probab

s 115/209 = 0.5502). The latter calculations avoid any
aused by SOT and assess independently if the cong
esolved by different combinations of columns are be
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Table 3
Expected and actual numbers of resolved PCBs in different states of 2- and 3-column separations

DB-XLB DB-5 Number Expected number, theory

SOT Empirical

+ + 60 50.1 52.3
+ − 55 50.0 62.7
− + 35 54.5 42.7
− − 59 54.4 51.3
Resolved by at least one of two columns 150 154.6 157.7

DB-XLB DB-17MS Number Expected number, theory

SOT Empirical

+ + 61 49.8 57.8
+ − 54 50.3 57.2
− + 44 54.1 47.2
− − 50 54.7 46.8
Resolved by at least one of two columns 159 154.3 162.2

DB-5 DB-17MS Number Expected number, theory

SOT Empirical

+ + 51 52.1 47.7
+ − 44 52.6 47.3
− + 54 51.9 57.3
− − 60 52.4 56.7
Resolved by at least one of two columns 149 156.6 152.3

DB-XLB DB-5 DB-17MS Number Expected number, theory

SOT Empirical

+ + + 34 24.9 26.3
+ + − 26 25.2 26.0
+ − + 27 24.9 31.5
− + + 17 27.1 21.5
+ − − 28 25.1 31.2
− + − 18 27.4 21.3
− − + 27 27.0 25.8
− − − 32 27.3 25.5
Resolved by at least one of three columns 177 183.5 181.7

Expected numbers were evaluated frompi’s calculated by SOT and determined empirically. Actual numbers were determined from indices in ref.[3]. Pluses
and minuses indicate resolution and failure of resolution, respectively.x0 = 1 index unit.

ing in a statistical manner. The actual numbers of singlets
correspond to all resolved congeners having unique IUPAC
numbers (i.e., a congener was counted only once, no matter
how many times it was resolved). Overall, a good agreement
exists between the expected and actual numbers of resolved
PCBs in the different states of then-column separations, re-
gardless of how theory is calculated. The calculations based
on empirical probabilities are superior in some cases, espe-
cially when small errors in predictions by SOT reinforce one
another. For example, the state probability is overpredicted
for failed resolution by DB-XLB and successful resolution
by DB-5 (first sub-table, third row), because the predicted ¯pi

for DB-XLB is high (i.e., the predictedpi is low) and the pre-
dictedpi for DB-5 is high. Consequently, these two positive
errors reinforce on multiplication. In other cases, however,
predictions based on SOT probabilities are superior to em-
pirical ones. Most important, the predictions based onp(n)
are excellent in all cases. The sum of both the expected and

actual numbers of PCBs in all states is 209, the total number
of PCBs. By happenstance, the expected numbers of PCBs
in all states of the 2-column separations and all states of the
3-column separation are about the same, because allpi’s and
p̄i’s are about 0.5. As predicted, the increase of singlet num-
ber due to supplementing two columns by a third one (i.e.,
from 149–159 singlets to 177) is smaller than the increase due
to supplementing a single column by a second one (i.e., from
95–115 singlets to 149–159). Together, the three columns re-
solve (177/209)× 100≈ 85% of the PCBs, whereas any one
column resolves only about 50% of them.

In addition to these results, the expected numbers ¯mp(n)
of PCB singlets resolved by at least one column were pre-
dicted for other intervalsx0 and compared to the numbers
actually found on further interpreting the three sets of reten-
tion indices.Fig. 5is a graph of these numbers versus ¯mx0/X,
with m̄ = 209 andX equaling the separations’ span in reten-
tion indices, as predicted by Minitab software. Because the
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Fig. 5. Graphs of numbers of PCBs expected to be resolved by at least one column vs. ¯mx0/X, wherex0 is the minimum interval required for resolution, in
(a–c) 2-column separations and a (d) 3-column separation. Circles represent retention-index results; solid and dashed curves represent theory based on SOT
and empirical probabilities, respectively. Phase combinations are identified. Arrows identify approximate coordinate corresponding tox0 = 1 index unit.

spans differ slightly (850 for DB-XLB and DB-17MS, 900
for DB-5), the same ¯mx0/X value corresponds to slightly
different x0’s. Actually, any combination ofx0’s could be
used; in the simplest case, however, ¯mx0/X is the saturation
and a useful coordinate of comparison. In the graphs, the
solid and dashed curves represent theory based on SOT and
empirical probabilities, respectively, and the symbols repre-
sent results calculated from the retention indices. The two
theories agree well, except for DB-5 and DB-XLB over the
range, 0.5 < m̄x0/X < 1.5, in Fig. 5c, and both agree with
the index results for ¯mx0/X < 0.5 or so. For larger ¯mx0/X,
the theory and index results may agree or disagree, depend-
ing on the specific case. This is not surprising, since early
SOT based on the Poisson distribution explained that the as-
sumption of randomness is most justified in high resolution
separations (smallx0), in which minor chemical differences
among adjacent components shift peak spacing by several
units of resolution[8]. Regarding the errors at large ¯mx0/X,
we observe that theory overpredicts the singlet numbers, es-
pecially for the 3-column separation, due to reinforcement
of error on multiplication of ¯pi’s. The arrows in the graphs
identify the coordinate roughly corresponding tox0 = 1. At
this coordinate, the graphed results are similar but not identi-
cal to those inTable 3, sincex0 varies slightly in the former.
Since this coordinate is about 0.25, accurate predictions are
possible for intervalsx0 smaller than about 2 index units.

We observe that one can use theory as a guideline to fur-
ther improvements of the PCB separation. For example, Eq.
(1) predicts that addition of two more independent columns,
which also providepi’s of 0.5, should increase the probability
of singlet formation to 0.969, making possible the separation
of 202 of the 209 PCBs. As another example, Eq.(1) predicts
that improving the existing three separations, such that all
pi’s equal 0.7, should achieve about the same result.

4.4. Origin of column independence

Our theory is based on the assumption that all probabili-
tiespi andp̄i are independent and can be multiplied to cal-
culate state probabilities. A discussion of this assumption is
warranted. Clearly, independence cannot be interpreted as
the absence of correlation among retention indices. All the
stationary phases considered here are low polarity, and corre-
lations among indices are evident. One correlation is global,
in that elution order increases with the number of chlorine
atoms. Another correlation is local, in that most PCBs are
bracketed by adjacent neighbors that are the same for differ-
ent columns. Indeed, only 50 of the 209 PCBs are bracketed
by immediately adjacent neighbors that differ on all three
columns.

Rather, independence implies that a component may or
m nal-
ay not be separated by different columns. A simple a
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ogy clarifies this assertion. Consider that the outcomes of a
series of coin tosses represent resolution or lack of resolution
of all compounds by a specific column (the probabilities of
“heads” and “tails” need not be equal). Consider also that
different sequences of coin tosses represent separation at-
tempts by different columns. If independence exists and a
probabilistic description is valid, then a compound arbitrar-
ily labeled “5” (e.g., congener 5) cannot always be resolved
by all columns, anymore than the fifth coin toss (which also
is labeled “5”) in different sequences of coin tosses can al-
ways turn up “heads”. The argument is equally valid, if the
coin toss labeled “5” is not actually the fifth toss but a differ-
ent one (i.e., if the compound elution order is changed among
separations). Random outcomes of success and failure of sep-
aration must both occur for each compound, in accordance
with probabilitiespi andp̄i.

We consider the independence of the PCBpi’s in two-
column separations from two perspectives, postulating that
the same issues are important forn-column separations in
general. First, independence appears to occur because dif-
ferences between the retention indices of most PCBs on the
different phases are much larger than the retention-index in-
terval required for separation.Fig. 6 reports the difference
�I of retention index versus the IUPAC congener number,
where�I is the difference between the congener’s retention
index on two phases. All three�I combinations are consid-
e the
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Fig. 6. (a–c) Graphs of differences�I between retention indices of PCBs
on two columns vs. IUPAC congener number. Phase combinations are iden-
tified and identical to those inFig. 5a–c. Standard deviations,σ of �I’s are
reported.

jacent congeners, it actually may be the same interval. These
intervals govern separation, since ifxs≥ x0, then a congener
is a singlet, whereas ifxs < x0, then a congener is part of a
cluster.

Fig. 7a is a graph ofxs, as measured in index units, for con-
geners on the DB-17MS column versus its DB-XLB counter-
part, with each coordinate representing a specific congener.
Any correlation in this graph, as measured by the linear corre-
lation coefficientr, signifies that congeners do not behave in-
dependently on the two columns. This assertion is supported
by simulations mimicking the DB-17MS and DB-XLB sepa-
rations with random retention indices, for which coordinates
red, and the choice of which index is subtracted from
ther is arbitrary. The differences essentially are random
orrelation coefficients of lines fit to coordinates inFig. 6a,
, c are 0.0295, 0.156, and 0.188, respectively. The av
�I| is less than one index unit in all graphs, with stand
eviations� of 12.7, 10.7, and 6.9 in the respective figu
ecause of local correlations, many PCBs and their adja
eighbors have�I’s that are similar in sign but different
agnitude. Since the assumed retention-index interva
uired for resolution, as reported in ref.[3], is only one unit –
small fraction of most�I’s – small and subtle contributio

o �I are sufficient to cause separation by some phase
ot by others. In contrast, if all�I’s were the same, the sam
istribution of resolved and unresolved congeners would
ear in all separations, independence would be absen

heory would break down.
To support this argument, we observe that the larges

mallestσ’s reported above are associated with the bes
orst agreements of index data and theory for the 2-co
eparations (cf.Figs. 5a and 6a, andFigs. 5c and 6c). Thus, it
ppears that theory breaks down when the resolution int
0 becomes comparable to the spread of�I’s. In contrast
heory appears to be valid whenx0 is much smaller than th
pread of�I’s.

The above perspective largely is intuitive. A second
ore quantitative one is obtained by studying correla
mong the intervalsxs governing separation. In most cas
s is the smaller of the two intervals between a congene
ts adjacent neighbors. For the first or last eluting conge
t is the interval to its single adjacent neighbor. For two
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Fig. 7. (a) Graph of intervalsxs on DB-17MS column vs. intervalsxs on DB-
XLB column. Insert shows graph for smallxs, with square of dimensionx0

containing coordinates of congeners resolved by neither column at separation
thresholdx0. (b) Graph ofr vs.m̄x0/X for the three two-column separations
considered inFig. 5.

in graphs likeFig. 7a have no correlation. Most intervalsxs in
Fig. 7a are small, as indicated by the high coordinate density
near the origin. In contrast, a few coordinates having largexs
values lie near the diagonal and represent congeners that are
well separated by both columns (such coordinates are absen
in graphs based on simulations). Most of these congeners are
found at the separations’ ends, where the density of indices is
very low, and only a few of them are needed to cause corre-
lation, as quantified by the larger value (0.920) in the figure.

In contrast, the insert toFig. 7a is an expansion of the
graph for smallxs. These coordinates have some structural
location, because indices are known only to 0.1 index units
and adjacent congeners can be associated with the samexs.
However, they are largely uncorrelated, as indicated by the
smallr value (0.0224). It is evident that correlation of thexs
intervals of DB-XLB and DB-17MS is negligible for smallxs
but significant for largexs. The other two-column separations
in Fig. 5behave similarly.

If we consider only probabilityp(2) and not individual
state probabilities, then the amount of independence in our
two-column separations appears to be related to the size of
separation intervalx0. The insert toFig. 7a shows a square
having dimensionx0. Two sides of the square coincide with
the graph axes. The coordinates within the square (i.e., thex0-
square) correspond to congeners that are resolved by neithe
column, sincex < x for both columns. If probability theory
i the

square must equal ¯p(2). Indeed, the complement of the proba-
bility that coordinates lie within the square, as evaluated from
500 simulations of mimicked separations, is exactly equal to
the theoretical curve forp(2) in Fig. 5a. Since coordinates in
such simulations are not correlated, we propose that the valid-
ity of probability theory forp(2) can be gauged by the amount
of correlation in thex0-square, at least to a first approxima-
tion. Fig. 7b is a graph ofr versusm̄x0/X for the three two-
column separations considered inFig. 5, with r calculated
from coordinates inx0-squares of various sizes (the square is
replaced by a rectangle, whenx0 differs for the two columns).
Quantityr does not vary smoothly with ¯mx0/X due to the
slightly discretized coordinate locations. With one exception
attributable to small numbers of coordinates,r is small for
smallm̄x0/X and increases with increasing ¯mx0/X. Specif-
ically, correlation is virtually nonexistent for ¯mx0/X < 0.5,
the range inFig. 5over which theory forp(2) is most valid.
These findings give some quantitative insight into the agree-
ment and disagreement between index results and theory in
Fig. 5for small and large ¯mx0/X, respectively.

The assertion thatx0, which is related only to separation
efficiency, is connected to correlation should not be puzzling.
In many ways, it is no different from the assertion that SOT
is more valid for smallx0 than largex0.

From these considerations, we conclude that the PCB sep-
arations are independent only over a limited range of smallx .
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ecause of this, our application of theory to them is slig
ompromised. Clearly, it would be better if we had indep
ent indices but these are rare. Also, we recognize that

ssues may be relevant to the origin of independence an
ecome more apparent as future studies unfold.

.5. Limitations of theory

Since many chemical interactions affecting retention
imilar for different stationary phases, an upper boundn
ust exist, beyond which the assumption of independ
reaks down under the best of circumstances. Unfortun
e cannot predict that number; it depends on both the p
nd mixture composition. Clearly, at least three columns
e used, when separation efficiency is high (i.e.,x0 is small).
urther study is necessary to evaluate the bound.

Another limitation is thatαe(n), Eq.(4b), cannot be inter
reted as the effective saturation of ann-column separation
ather, as defined after Eq.(3), it is the effective saturation
nn-column separation having the same probability of sin

ormation as a single-column separation. Consequently
annot predict fromαe(n) the relationships between pea
oublets, triplets, etc., in single-column andn-column sepa
ations.

. Conclusions

One of the objectives of SOT is to provide quantita
stimates of the likelihood of separation. Our theory
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vides guidelines for the method developer who desires low
effective saturations, high effective peak capacities, short
analysis times, and large linear ranges, without using multi-
dimensional separations. By determiningpi, which can be
calculated once ¯m is estimated by one of several procedures
[4–7], the method developer can attain the desired level of
separation by improving the existingn-column separation,
adding more columns, or doing both.

It is interesting to note that correlations among different
columns are far less destructive to a statistical interpretation
of n-column separations than of multi-dimensional ones. For
example, the use in GC× GC of any of the two columns cho-
sen to measure PCB retention indices would produce (un-
less unusual programming conditions were chosen) a highly
structured and ordered two-dimensional separation, which
could not be interpreted by Eq.(10). Although SOT based on
autocorrelation methods has progressed toward such an in-
terpretation[10], it remains a complicated problem. It is sat-
isfying to find that simple probabilistic approaches are useful
in some aspects of correlated separations.

Finally, it is worth considering that theory also may apply
to the same column operated under different conditions, such
as a GC capillary that is temperature programmed at different
heating rates.
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